PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` ELF>,@h@8@,|,| || |  || | $$Ptdooo44QtdRtd|| | 00GNUD{pNh[!qWȱDW\_GX[GBEEG|qX T幍V.%HHG\ 9]^.']LmX#98 - o)=4>/um=Ora 4WHF)38 b~3hR"=9 eC g / dl   b X( h% @c c__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyFloat_AsDoublePyErr_OccurredPyFloat_FromDouble__finite__isinf__isnan__errno_locationmodfPy_BuildValue__stack_chk_failfmodroundPyBool_FromLongPyArg_ParseTupleAndKeywords_Py_FalseStruct_Py_TrueStructPyExc_ValueErrorPyErr_SetStringPyArg_ParseTuplePyNumber_Index_PyLong_GCDPyObject_GetIterPyIter_NextPyExc_MemoryErrorPyMem_FreePyMem_ReallocPyMem_MallocmemcpyPyExc_OverflowErrorfrexpPyLong_FromUnsignedLongPyNumber_MultiplyPyFloat_TypePyType_IsSubtypefloorPyLong_FromDoublePyLong_AsLongAndOverflowPyLong_FromLongPyNumber_LshiftPyErr_Format_PyObject_LookupSpecialPyObject_CallFunctionObjArgsPyType_ReadyPyExc_TypeErrorPyErr_SetFromErrnosqrt_Py_log1pfabsatanasinacosPyArg_UnpackTuplecopysignpowldexphypotceillog2PyLong_AsDoublePyErr_ExceptionMatchesPyErr_Clear_PyLong_FrexpPyNumber_TrueDividelog10logatan2PyInit_mathPyModule_Create2PyModule_AddObject_Py_dg_infinity_Py_dg_stdnan_Py_expm1_Py_acosh_Py_asinh_Py_atanhlibm.so.6libpython3.5m.so.1.0libpthread.so.0libc.so.6_edata__bss_start_end/opt/alt/python35/lib64:/opt/alt/sqlite/usr/lib64GLIBC_2.14GLIBC_2.4GLIBC_2.2.5|@ii ui l ui Mui | 0-| ,| | ui ~i j( i0 i8 iX i i   i PF ` i( 0F8  @ iH FX  ` ih Ex  i E ` Pi I  iȕ Eؕ  i S @ Gi H  i( E8 @ @ iH pEX  ` ih `.x  i 0G Џ i  G  diȖ PEؖ ` i 0E  i E  i( =8  @ iH SX  ` Vih 0Ix  i ;  i 5 ` jȗ Gؗ  h 4  hi P ` h( P28  @ jH 2X @ `  jh 1x  j `1  bi N  jȘ Gؘ  ni PV  j D  #j( @V8  @ )jH 0VX @ ` .jh .x  [i J  3j .  iș Dؙ  i D  ;j D ` i( pD8  @ iH PDX  ` @jh Ax  ~ ~        ( 0 8 "@ #H %P -X .` /h 2p 5x 8 : > ? E a F G H J K M P Q R T V  ( 0 8 @  H  P  X  `  h p x          Ȁ Ѐ ؀  ! " # $ & ' ( ) *( +0 ,8 .@ 0H 1P 3X 4` 6h 7p 9x ; < = @ A B C D a Fȁ GЁ I؁ L N O Q S T UHHV HtcH5W %W @%W h%zW h%rW h%jW h%bW h%ZW h%RW h%JW hp%BW h`%:W h P%2W h @%*W h 0%"W h %W h %W h% W h%W h%V h%V h%V h%V h%V h%V h%V hp%V h`%V hP%V h@%V h0%V h %V h%V h%V h%V h %zV h!%rV h"%jV h#%bV h$%ZV h%%RV h&%JV h'p%BV h(`%:V h)P%2V h*@%*V h+0%"V h, %V h-%V h.% V h/%V h0%U h1%U h2%U h3%U h4%U h5%U h6%U h7p%U h8`%U h9P%U h:@%U h;0%U h< %U h=%U h>H n H=n UH)HHw]HTR Ht]@Hm H=m UH)HHHH?HHu]HR Ht]H@=m u'H=R UHt H=O Mh]m @f.H=O t&HWR HtUH=O H]WKf. @1f.fWf(v@H Q?H>f.YYXX HHu^f(H >H*>f.^^XX HHhu^f(Ðf.HH4f.?zuD$HD$uY?H1HfHHf.?zuD$HD$uY?H1HfH(HdH%(HD$1f.4?D$D$5u&D$vD$H|$D$`HD$dH3%(L$H=o9H(zHfj1HT$dH3%(uoH(HD$dH3%(fT:?uOL$H= 9H(MDHD$dH3%(uD$H=8H(f(d@Hf($> >fTf(XL$,H:L$HcHf\ ==Y _>fW$fTfVj>Hf(Yf(f\ p=p=Y >DY P=f( =D\ 8=(=Y =gf=\Y< =?< =*DHHf.<zuD$HD$u}HHc1HfHHf.D<zuD$MHD$uHHc1HfHHDf.;zuD$HD$uHHca1HfHhfWdH%(HD$X1HD$PHLL$@H5;HD$HD$HLD$8H a H(6t$HH$1L$PL$\$HL$f.d$Pf.L$8T$@f.f(T$(d$ \$L$QumT$(f(>T$(L$\$d$ uBf(Yӿ-;\fTfTf.sYfTf.rMfDHK HHL$XdH3 %(uOHhHHK HD1@1f.@@HAK H58H81aH8HH54dH%(HD$(1HL$ HT$3H|$HHD$H|$ HHD$ tOH|$HH|$H7HVHHtfH|$ HHQHHt.Ht$(dH34%(uUH8DH|$HHQHHuHWHD$R0HD$f1@HWHD$R0HD$`f(ظfWYf(;9-9%9Y˃^\XuUSH(t$L$\$>\$Hm9(fWL$+t$YY^ 8H([]f(fAWHAVAUATUSHdH%(H$x1HHfWLl$pA 8E1Ml$Hl$@Hl$f)\$HHl$f(\$Hf)\$ l$H+D$l$f(\$ f)\$ l$HML$l$f(\$ 11Af(f(fTfTf.w f(f(f(f(XT$XT$X\T$`D$`\L$hD$hf.z fWf.tD$hAHHL$XL9qf.zfWf.f(l$ f)\$0L$L$l$ f(\$0D$f)\$ l$l$f(\$ D$f)\$ l$l$f(\$ t|$HX|$|$H|$@1X|$|$@IHCHP0f(\$ l$IDL9}L4HC 71ML9|fHF H50H81HEHPHHUM9tL^H$xdH3 %(H]HĈ[]A\A]A^A_HI9wM9l$f)\$ L$J4LHL$l$f(\$ EL4IHl$7|$@f.ztBD$HHE H5/1H8HUHR0Ml$XIFAHHD$XT$XINALf(XD$XD$X\D$`D$`\L$hD$hf.f(^fDT$XHA f(XD$XD$X\D$`D$`\L$hD$hf.f.HuD$XHJ<HItJL4LHL-L$l$f(\$ sHD H5.1H8MiD$@FHn1RH^D$hf.wjD$hf.BADf.1D$hL$XXT$XXf(\|$`T$`f.L$XfA.lvSHH dH%(HD$1f.C2f(f(L$10L$t6HD$dH3%(H H=-[f(fDf(L$AL$uf. 1ztf(H|$\$f(iD$HL$O1HT$dH3%(uH [AUIHL)IATHUSHHH@w>HHH@w1I@H9vLHH9wHL[]A\A]J,1HHEfHHuHL|I1MtNHHLd1HHtHLHI$HPHI$tKHtSHHPHHHtH[]A\A]fHSHl$HR0HD$H[]A\A]ÐIT$LR0H@f.AWAVAUATUSHH(H~H5A dH%(HD$1H9t ]Kf( $ $if( $ $f.LFf(HH-Ht$H}H+IID$MIHIH1HHLI fDHHHSuHMfLHHH1HLEHIuHoHIHLI.H$bH<$I/eH4$LHI4$HVHI$KL<$IHHHSIHHIu IGLP0L1DHPHH!uLH)xHHRHLH HQHHQI $HQHI$u%IT$H$LR0H$HA*J H5c,H81IFLP0fIGLP0IT$LHD$R0HD$L<$HIL<$I,$t*I/zIGLP01HCHP0GID$LP0I,$BID$LP01HSH$HR0H$H= H5+H81H= H5+HH81W1HMATUHSH~Ht[H5dR HHHtd1H18H IHQHHt[]LA\fDHCHP0[]LA\fD y[E1]LA\DHIuHEH5 +HPH< H81닐HD$!tj"tHv< H8FH@ ,0T$ `+fTf(f.wHk< H5:&H8|HfH< H5&H8ZAUAATIUHSHf.*D$z u Huo7D$H$tD$}$t7D$lt(EtcH; H5k%H8H1[]A\A]$6tu$HL[]A\A]$vtH; H5$H8JH1[]A\A]f.HH: H5W; 1HH: H5: 1HH: H5?; 1HH: H5: eDHHf: H5: 1HHHF: H5: 1(HH&: H5: 1HH: H5': DHH9 H59 DHH9 H59 DHH9 H59 1HH9 H5/9 1hHHf9 H579 1HHHF9 H59 1(HH&9 H59 1HH9 H59 1HH8 H58 1UHSHf.'zuD$HD$uPD$HD$Ջf(ȅtL$L$uHf([]VfDH1[]HH5aHH5QHH5AHH561UHHֺSHHdH%(HD$81LL$0LD$(H|$(H|$0D$f(D$_&f.D„t|_HL$HD$D$tsD$D$'HL$8dH3 %(HH[]@\$f.D„zHl1fDD$t1D$tD$o"\D$I1M@D$5%!pHH56 HF :f.HH6 H5f.SHH5 H@dH%(HD$81LL$0LD$(H|$(H|$0D$f(D$l$f.D„\$f.D„D$tD$;L$D$HD$u=tD$du^D$HL$8dH3 %(ubH@[D$u1D$u"!fH=1fDD$@f.UHH5SHHdH%(HD$81LL$0LD$(H|$(EH|$0$6f(D$"f.D„$$f.D„v$u`3$Hl$f.-b"L@$HL$8dH3 %(HH[]D$MtL$$Hf(L$L$vf(L$f(L$8L$B$f.!z" $,DD$u$D$bfWT$f.."fKH|1=J!<$4$f.53!zt$4${Ct!<$ fTf.zIfWt$f.Qf.GT$$@ $ $1fW$f. !T$fWf($f.D! $ D$ fTf)T$1 |$f.fWDf.v#f(T$,<$fT<$1T$f.zt%tI4$fT5K 4$ $$f.D$$$UHH5tSH8dH%(HD$(1HL$ HT$QH|$ HGHt$HH T$tHHHIL$f. {\f(L$L$ukL$L$f(H\$(dH3%(H8[]t@HQ/ H5H81fDH~gfT fV L$L$"f(L$YL$_1a@H1HH}fT gfL$L$Hf( f(L$L$t E"^ESfD{f.SHH5mH@dH%(HD$81LL$0LD$(.H|$(H|$0D$f(D$f.D„\$f.D„D$ D$ukL$D$HTD$9D$&uD$D$.@d$fTf( HL$8dH3 %(H@[H-1fDD$tYD$wD$d"5@l$fTf(}k-D$1?@![f.UHH5@ HSHHHtH1H1H HQHHt H[]fDHSHD$HR0HD$H[]DH1HuHz+ H5, H[H1]f.UHH5%@ HSHHHtH1H1dH HQHHt H[]fDHSHD$HR0HD$H[]DH1HuH* H5+ H[H1]f.f(HL$L$u+f(L$f(u f. lvHDf. Xw{,!H@f(Hu!HfDUHSHH(dH%(HD$1HGtwHWf.{%HT$dH3%(H([]uD$HD$tH) H8au1fH) 1Ht$Hf.NzuD$WHD$u@D$@H*L$YXD$5H!) H5H8j1>@f.HH5HH5ATHH5USH dH%(HD$1LL$LD$HD$lH|$H5hCHHt{H|$HHtBH5G"HItJHHHHHPHHtUI$HPHI$t4HL$dH3 %(Hu=H []A\H+u HCHP01@ID$LP0HCHP0f(HL$L$tCfWf.wyL$fW!L$f.z tHÐf(L$AL$f(uf. wt!HÐf(Hf(HL$L$tCfWf.wyL$^fW!L$f.z tHÐf(L$L$f(uf. cw!HÐf(HCf(H8 $N $f(u!, $f(CH8fD $ $f.-f(SfTf. f(L$f)l$ $$f(\XT$\z$\L$f(T$f(l$ \%YfWf.Xf($$f($"H8Df.fWf.u!8H8f( H8fWfDf(T$\$f),$~f(,$fTp\$$f(\ T$\ $\\f(f(H($>$u-f($f(uf.!H(@fWf.f($$f.z"u fWf.Af. fTf.v} ^f( $ $f(i$"TD`$$!fTfV%H(f(@f. vNfWf.]["k+!H(Pf(f.Xf(\\Y% fWf.^d$*f(L$$$D$f(rT$d$^L$$Yf.X$$\ 8f($$f(Yf($L$f(lfD,H HcD\\ f(f(fW^fY f(\ G$$Yf(YWf(L$\$+\$$f(GL$^$ $^Yf(T$XT$d$^ $\$Y\%uf.$v\ f($^Y f(\ ?j$^^~fD(ȸ2fWDYfD(xDwf(DRfA(fA(Xf.fD(f(f(f(XfA(AX҃YXDYf(YYA\\uUSH(D\$\$d$D $FD $Hu(fAWd$+\$D\$^AYY^%H([]f(@f(HL$ML$u;kfTf.w1f.rOfWf.f(v\H@f(Hf(f(H\f.L$UfWL$f.w H\f(f(HL$L$uC[ fTf.w9f.fWf(r7f.vPy H\f(Hf(HL$fWL$f(f.w\) Hf(H$f(L$ut$uf$D$tb m L$fTfV { f. ,$fTfV-v f( Hu$$f.%"  L$fTfV  f. < zu$fTf(f$fTfV f(f4$fTfV5 f(^fD$fTs fV >fDL$$Hff.SH=1 ~HHtzn yH5HH ZH5HH1f)\$f.L$vdf(\Xf(Y^XYL$f(\$f(fTfT5H(fVfDf(H(Xf(\X^Kf(\$YL$HH(dd)dd|$dd:iscloseOO:gcdintermediate overflow in fsummath.fsum partials-inf + inf in fsum(di)math domain errormath range errorcopysignatan2fmodpowdO:ldexphypotlogpi__ceil____floor__brel_tolabs_tol__trunc__mathacosacoshasinasinhatanatanhceildegreeserferfcexpm1fabsfactorialfloorfrexpisfiniteisinfisnanlgammalog1plog10log2modfradianssqrttruncxPx_7a(s(;LXww0uw~Cs+|g!??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDAiAApqAAqqiA{DAA@@P@?CQBWLup#B2 B&"B补A?tA*_{ A]v}ALPEA뇇BAX@R;{`Zj@' @tolerances must be non-negativefactorial() only accepts integral valuesfactorial() argument should not exceed %ldfactorial() not defined for negative valuestype %.100s doesn't define __trunc__ methodExpected an int as second argument to ldexp.@9RFߑ?cܥL@ƅoٵy@-DT! @???& .>9@kﴑ[?#B ;E@HP?7@i@E@-DT! a@?>@iW @?-DT!?!3|@-DT!?-DT! @ffffff?A9B.?0>;4EPx0 0@`0 @ pPP h 08PPph0Pp(@Xp pPh@`p 0 0p p  ( @ x @ P 0P p ( X zRx $FJ w?;*3$"Dp\GD v F F|(GD v F F,XLD0 F l D n J f I x[D  V GD s I F GD s I F,GD s I FLHDp[ A lD@ F ,FAD@UAAL8BEB B(A0A8G 8A0A(B BBBA , AG0Z JT v AA \<"BND A(G@u (D ABBF  (A ABBJ X (A ABBB LxBBB B(A0A8G` 8A0A(B BBBA D(BAD D AEG K AEG Q DEF $4D o E E C \\BED D(D@ (C ABBA ] (D ABBJ j(C ABB4Ld| (08@ H$P<X4T`ADD0f EAK DCA,AQD` AAE 4 $L(AXP AH ,t AUD` AAD ,AKDP AAI $`AXPB AD <XAND0l AAG X AAF aAF<<AND0l AAG X AAF aAF,|H z F c E H H Y,2ADG@V AAD 4  BUA D@  AABA $D`H V B ~ B H$lH V B ~ B H,pH@q G  F D D U K $PH0{ E  I O I , AD@iAA, H K E H H Y O g,L hH S E H H H H k| tD  D  HA D0 T Q X, `lH V B B N W I N U $$ HP I L D $L xH0N J u K H H 0-,| MWl| X( h| | op @   p" o(oobo| ((((((())&)6)F)V)f)v)))))))))**&*6*F*V*f*v*********++&+6+F+V+f+v+++++++++,,&,6,F,V,f,v,This module is always available. It provides access to the mathematical functions defined by the C standard.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.isinf(x) -> bool Return True if x is a positive or negative infinity, and False otherwise.isnan(x) -> bool Return True if x is a NaN (not a number), and False otherwise.isfinite(x) -> bool Return True if x is neither an infinity nor a NaN, and False otherwise.radians(x) Convert angle x from degrees to radians.degrees(x) Convert angle x from radians to degrees.pow(x, y) Return x**y (x to the power of y).hypot(x, y) Return the Euclidean distance, sqrt(x*x + y*y).fmod(x, y) Return fmod(x, y), according to platform C. x % y may differ.log10(x) Return the base 10 logarithm of x.log2(x) Return the base 2 logarithm of x.log(x[, base]) Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x.modf(x) Return the fractional and integer parts of x. Both results carry the sign of x and are floats.ldexp(x, i) Return x * (2**i).frexp(x) Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.trunc(x:Real) -> Integral Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.factorial(x) -> Integral Find x!. Raise a ValueError if x is negative or non-integral.fsum(iterable) Return an accurate floating point sum of values in the iterable. Assumes IEEE-754 floating point arithmetic.tanh(x) Return the hyperbolic tangent of x.tan(x) Return the tangent of x (measured in radians).sqrt(x) Return the square root of x.sinh(x) Return the hyperbolic sine of x.sin(x) Return the sine of x (measured in radians).log1p(x) Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero.lgamma(x) Natural logarithm of absolute value of Gamma function at x.gamma(x) Gamma function at x.floor(x) Return the floor of x as an Integral. This is the largest integer <= x.fabs(x) Return the absolute value of the float x.expm1(x) Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp(x) Return e raised to the power of x.erfc(x) Complementary error function at x.erf(x) Error function at x.cosh(x) Return the hyperbolic cosine of x.cos(x) Return the cosine of x (measured in radians).copysign(x, y) Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. ceil(x) Return the ceiling of x as an Integral. This is the smallest integer >= x.atanh(x) Return the inverse hyperbolic tangent of x.atan2(y, x) Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered.atan(x) Return the arc tangent (measured in radians) of x.asinh(x) Return the inverse hyperbolic sine of x.asin(x) Return the arc sine (measured in radians) of x.acosh(x) Return the inverse hyperbolic cosine of x.acos(x) Return the arc cosine (measured in radians) of x.gcd(x, y) -> int greatest common divisor of x and yui~ijiiiii iPF` i0F iF iE iE` PiI iE iS@ GiH iE@ ipE i`. i0GЏ i G diPE` i0E iE i= iS Vi0I i; i5` jG h4 hiP` hP2 j2@ j1 j`1 biN jG niPV jD #j@V )j0V@ .j. [iJ 3j. iD iD ;jD` ipD iPD @jA math.cpython-35m-x86_64-linux-gnu.so.debugҘp27zXZִF!t/OP]?Eh=ڊ2N CR`ph/iM]̏yub]E*-@+YTAt㍜4V"T5n~SҢRS[)|}!Ť^e >k?0_bq/puq/ëՔo~OdF i9ЙC Ύuye!YmB y&O0RlvƯlϑvXɥpъfyc F"&c"v|:`Pp%޶#Z81CEÛ'C3PVFB3FgzF2DvیY{+ śK\=q9'VC,0B$[b] rltx{ ۲FK3N#Y;z I!fa2#3[;*!aZ.!o sЀ Qd[Z #K04X)\>E 液bN6X T^ {0݆#z]@m4_<  1aHXJ~P\OYIVMoR#goKS)QwU,[{w.1I] Ө`r9ۑ K,G$>HxBϪO0ꐀ2'yCǍR8&4Zכ6 ,9L-_[Pe2pSe :?O3 0rr~OiH_b gs7܄D*dmOU'*Nq \\Ȕ^%`)fD8;rXNx*` 'J\ k cdyϬx^1qбYATz