PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` ELF>@@8@DD  4 ȍȍ ȍ $$Ptd؂؂؂LLQtdRtd XXGNU| Gë-D-35GX[Gf8BEEG|qXV.%HH Fu5}$ t;EYa Oj8 R"D@ |J ~ `O@+ 6 p{l0    , z P{__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClasses__isnan__isinfatan2__finitehypotlog__errno_locationldexp_Py_log1p_Py_c_negsqrtsintansincosPyArg_ParsePyComplex_FromCComplexPyExc_OverflowErrorPyErr_SetStringPyExc_ValueError__stack_chk_failPyErr_SetFromErrnoPyArg_ParseTuple_Py_c_absPy_BuildValuePyFloat_FromDoublePyComplex_AsCComplexPyErr_Occurred_Py_c_quotPyBool_FromLongPyArg_ParseTupleAndKeywords_Py_c_diffPyInit_cmathPyModule_Create2PyModule_AddObject_Py_expm1_Py_acosh_Py_asinh_Py_atanhlibm.so.6libpython3.5m.so.1.0libpthread.so.0libc.so.6_edata__bss_start_end/opt/alt/python35/lib64:/opt/alt/sqlite/usr/lib64GLIBC_2.4GLIBC_2.2.50ii ui T ui sui   @     h p `  Ȝ L؜  ܀ J ` Հ I  ̀( H8  @ ƀH pEX  ` h Dx  c 8  \ 7  Bȝ  (؝ `  pB   A ` ( PA8  @ H @X  ` h `?x @  >  | =  qȞ =؞ @ j 9  V 3  O( 28  @ HH .X ` ` <h @'x   &  ȏ Џ  ؏    & )  ( 0 8 @ H P  X  `  h  p x          Ȑ А ؐ     7 ! " # $ %( '0 (8 )@ *H +P ,HHx Ht;H5x %x @%x h%x h%x h%x h%x h%x h%x h%x hp%x h`%zx h P%rx h @%jx h 0%bx h %Zx h %Rx h%Jx h%Bx h%:x h%2x h%*x h%"x h%x h%x h% x hp%x h`%w hP%w h@%w h0%w h %w h%w h%w h%w h %w h!%w h"%w h#%w h$%w h%%w h&%w h'pH H= UH)HHw]Hu Ht]@H H= UH)HHHH?HHu]Hu Ht]H@=y u'H=u UHt H=bs -h]P @f.H=0s t&HWu HtUH=s H]WKf.HD$ $ux$uj$D$tfAgL$fTfV gf. f,$fTfV-gf( @eH{u$$f.%efL$fTfV ff. ezu$fTf(f$fTfVff(f4$fTfV5ff(^fD$fTCffVkf>fDL$$Hff.f(HL$]L$t;f. dfT efV e{if. dztHf(L$L$ҸufT efV xef. `dzt1fDuf. FdztHSH D$ $$ieT$cfT$$f.fTw f. cYYf(cXL$$T$N$T$H$T$HL$ID$Z$N‰HH)H\ HHH HBH $$H$ $H [fD cf.vrf.vlfWf.w f.f(ÿ5T$T$5D$f(L$zf(\bff(\$f(T$f.bre bT$f.\$rKf.w f(f(f( )bf(YX\YXbYWf(FL$$$H!H$SHHPD$L$L$ D$fWf.D$Fal$f.%b\$fTf. *al$f.:4taf."f.f3a!D$D$‰HH)H+ HHH HBHL$D$HD$L$HP[Ð `D$YYL$T$|$Y`^^OafWT$fTfV=iafW|$ :T$T$HD$ HL$\ff(YD$L$H\Y8`\$ f(d$@YX^L$Hd$@XL$_\$ YD$Y_YT$0\f(n`fWY-Z_l$ gT$0(fDD$L$?HW2D$HL$L$HD$ZQf. :_f(f)d$0T$ \$Qf.\$T$ f(d$0^\$f)d$ f(V-_\$f(^fWfWf)l$f(T$0YO^f(l$\$fTfUfVl$ DT$0f(\$f)d$ >f(f(d$ \$$f(d$0f(T$ \$*fUSH8D$ $t$ *D$'D$t$h‰HH)H HH2zt$|$$u$GD$L$H8[]fDt!$V_fW$$f.zJl$f.$D$$t$%\f(d$XYfT]D$2@]d$fTf.\D$-D$$$D$m%\ $f(f(^Yf(l$Xf(YYYX^^YYL$$$L$H8f([]fH|$(Ht$ \$$FT$\$fT\Y[L$(|$ fVV\L$<$f(T$L$T$Y [Y $YLf.D$$t$-e[f(l$XYfT[D$UHH5YS1H(dH%(HD$1Ht3$HL$E!tD"t'rHHL$dH3 %(Hu""fDu1E|$ f.=V!!DD$5&fW\$f.zd$ f.D$|%Wf(WD$fTf)d$0fVf)\$T$(3f(f(d$0fTf(\$T$(fVD$ D$ D$T$ YD$T$L$ T$Yx@DHid H5TH8j1D$H|$HHt$@^VT$@L$HfTfT"Hd H5FTH81Kf.SH@D$L$"D$fWt$f.zul$f.z PVD$ TfT\$f.fTv f. LUf(f)T$0YY\$ f(d$d$f(\$ f(T$0XQf.XfWf(t$Xl$f.fT-UU^;fTfV\$D$BHL$HD$C+D$D$‰HH)Hx HHH HBHL$D$HD$L$H@[ÐfWf.w f.5\$ f)T$0D$5\$ f(f(D$XD$\$ f(T$0Qf.z~f(\$f)T$ W\$f(T$ fD1HD$7@fTfVD$f(f(\$f)T$ f(T$ \$Vf)T$ \$\$f(f(T$ \f.UHH5QS1H(dH%(HD$1Ht3}$HL$E!tD"t'BHHL$dH3 %(HuLd$Hl$-HLd$D$Hl$L$iu#HL$(dH3 %(uH0[]A\DD@UHH5AS1H(dH%(HD$1HtC$HL$$EB^ƒ!^tD"t'RHHL$dH3 %(HudH%(HD$(1HT$x1t"L$D$L$1u#HL$(dH3 %(u#H8fD$U1@ffDSfWHH Y HHH>dH%(H$1HD$X50?LL$pLD$`D$XHD$HD$PD$t$PH$1oD$d$Pl$Xf.|$`T$h\$pL$xl$@d$8|$T$(\$ L$0,f."|$ f.|$D$1vD$(cD$ PD$0=uyT$ \$0L$(D$L$0D$HD$ YD$8f.D$HsxD$L$(aYD$8f.D$HsY\$@1f.\$HfH(H$dH3 %(uaHĐ[@T$0f.T$(H\K H5<HH8fHt@1@+f.ATIHH5;US1H dH%(HD$1Ht6x$HL$L|E!tD"t':HHL$dH3 %(Hu HJ>  f(^=  ~=  ~=  ~=  >= =>= =F= f(Z= Z= Z= Z= Z= Z= Z= Z= f(V= V= V= V= ^= 5^= 5^=  ^=  ^=  ^= 5f= 5f= Hc= -[= HX= -X= HU= Hj= -J= Hg= -= H\= -= Ha= -y= H^= -n= -< < < = = >= >= >= >= >= >= >= >= >= >= >= >= ->= Hk= 3= f(=/= H= =$= =D= =D= =<= =<= <= f(=8= =8= =8= =8= =8= =8= =@ =(= = f(-< < f(-< < = = = = = = =6  6 H6 7 H6 7 H6 w-f( 6 H6  6 =6 f( =6 =6 =6 6 =46 6 6 6 6 6 6 L=D6 T6 f(6 6 f(-6 -6 6  6 6 H6 y5q6 H~6 H{6 H6  P=p6 H6 H6 =Z6 =j6 f(f6 5~6 5>5 6 6  6  6 %&6 %&6 %F6 %F6 F6 F6 F6 F6 F6 5F6 =F6 H6 5Sc%H6  =6 =6 =6 =6 =6 =6 =6 5H6 =X5H6 5=5 =5 5 5 =5 %5 =5 =5 =6 =6 =6 =6 =6 56 =6  6 56 H=0 55 HR0 55 H_0 Hd0 55 55 55 55 55 55 55 5-lf(= 5 5 -/ 5/ 5/ -/ / -/ 5/ 5/ -/ -/ =/ =/ f(/ / f(8 =/ H0 f(/ HV0 / / / / /  =/ / / / f(=/ =/ f(5/ 5/ 5/ 5/ 5/ 5/ 5V . . . . . . %n/ %n/ 5v/ Hs/ %{/ Hh/ %p/ f(=/ H/ =/ H0 =/ =/ =/ =/ =/ =/ =  =v/ =v/ =v/ =v/ =V . . . . . . >/ %F/ %F/ F/ =F/ F/ %N/ %N/ HS/ %  - f(5 H4/ \/ Ha/ H)   ~ . . -. -. -. -. -. -. -/ -/ -/ -/ -/ -/ -( f(%( %( %( ( 5( 5(  ( %( Hg) % =  HL) ( HY) Hv) ( ( ( ( ( ( ( N N( %N( N( %N( %N( %N( ( ( ( ( =( =( =( -( -( -( -( H( =( H( H( =H( ( Hw( ( f() Hp( ) Hm( ) Hb( ( Hg( -( H\( -( HQ( -)( HF( -( -N( -N( -N( -N( -N( -N( -N( -N( =n( H( c( f(_( H( T( H( %)a( a( )=)( %)( =)( A( A( A( A( A( A( A( A( A( I( Q( Q( Q( Q( Q( Q( HH[H(f( fTf.f(vrT$%Wf(T$f.zf(tVf(d$T$\$\$d$f(T$H(\f(Y^胜\H(fDf.zuf黜f.f(H $ $u7f.f. #r)f( $+ $f(XHÐf.{jf. \f(f(XYXQf.f(HXD;!HufWDf(跛Xdf.f(Y\Qf.z5f(HXX^\m $Ӝ $f(OT$ $赜T$f( $@f(HHL$0譚L$0f(֚L$0f(%fTf(f.f.f.Lf(%YXQf.f(L$0f)$XX^XpL$0f($f(fTfT=HHfV@f(XHHf(L$0f)$$L$0XVf($f(%Yf(XQf.zlXL$0f)$^f(Xƚf($L$0Qd$ f)\$ $T$0 d$ f(f(\$ $T$0d$8f)\$ L$4$T$0Țd$8f(f(\$ L$4$T$0Lff(H(L$識L$f(%fTf.r!<!H(f-f(f.w=f)\$f.L$vdf(\Xf(Y^X胙YL$f(\$f(fTfT5H(fVfDf(H(Xf(\X^+f(\$YUL$HHD:tanhmath domain errormath range errorD:tanD:expD:sqrtD:sinhD:sinD:coshD:cosdd:rectD:polarddD:phaseD:log10D|O:logD:isnanD:isinfD:isfiniteDD|$dd:iscloseD:atanhD:atanD:asinhD:asinD:acoshD:acospiabrel_tolabs_tolcmathtolerances must be non-negative??9B.?7'{O^B@Q?Gz?_? @@Ҽz+#@iW @?Uk@& .>9B.?-DT! @!3|@-DT!?|)b,g-DT!?!3|-DT! -DT!-DT!?-DT!?!3|@-DT!?-DT! @ffffff?A0>;L(hhh( `hHث(XȰصHx8@px@x8`x@zRx $FJ w?;*3$"DPtD  D dH L D d$PyAD0# AG $AG`5 AB <AADP AAG _ EAC ,@AKF@f AAF ,DСAKFP AAE <tBLA A(D (A ABBG $ADP AB ,AKF@f AAF , 8eAD` AG  AG ,<xAKF@f AAF ,lAKFP AAE ,eAD` AG  AG ,AKF@f AAF ,AKF@r AAJ ,(hDf F \ D 4LxBKA D   AABA 4`BKA D`  AABG 4BKA DPt  AABF ,pAKF@v AAF D$UBLB D(A0D 0A(A BBBC l(D@x A D@x A D@b J $x5AX AE 4BNA F@i  AABD 4,BNA FP  AABC $dмADPP AJ ,8AKF@f AAF ,ȿAKFP AAE $xANP AK $PAN`i AG $<@+AP *+DdD0 T Q,lH V B B N W I N U $HP I L D $H0N J u K H H @ T^s    o@   `P  o oon oOȍ Vfv&6FVfv&6FVfvThis module is always available. It provides access to mathematical functions for complex numbers.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two complex numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.isinf($module, z, /) -- Checks if the real or imaginary part of z is infinite.isnan($module, z, /) -- Checks if the real or imaginary part of z not a number (NaN).isfinite($module, z, /) -- Return True if both the real and imaginary parts of z are finite, else False.rect($module, r, phi, /) -- Convert from polar coordinates to rectangular coordinates.polar($module, z, /) -- Convert a complex from rectangular coordinates to polar coordinates. r is the distance from 0 and phi the phase angle.phase($module, z, /) -- Return argument, also known as the phase angle, of a complex.log($module, x, y_obj=None, /) -- The logarithm of z to the given base. If the base not specified, returns the natural logarithm (base e) of z.tanh($module, z, /) -- Return the hyperbolic tangent of z.tan($module, z, /) -- Return the tangent of z.sqrt($module, z, /) -- Return the square root of z.sinh($module, z, /) -- Return the hyperbolic sine of z.sin($module, z, /) -- Return the sine of z.log10($module, z, /) -- Return the base-10 logarithm of z.exp($module, z, /) -- Return the exponential value e**z.cosh($module, z, /) -- Return the hyperbolic cosine of z.cos($module, z, /) -- Return the cosine of z.atanh($module, z, /) -- Return the inverse hyperbolic tangent of z.atan($module, z, /) -- Return the arc tangent of z.asinh($module, z, /) -- Return the inverse hyperbolic sine of z.asin($module, z, /) -- Return the arc sine of z.acosh($module, z, /) -- Return the inverse hyperbolic cosine of z.acos($module, z, /) -- Return the arc cosine of z.` L ܀J` ՀI ̀H ƀpE D c8 \7 B (` pB A` PA @ `?@ > |= q=@ j9 V3 O2 H.` <@' & cmath.cpython-35m-x86_64-linux-gnu.so.debugH7zXZִF!t/w]?Eh=ڊ2N`O> /_'G(9n `T$2l <5DC49˒2 0 kzRTsl@Hȵ m] /Vli*B ^3, Xi,{Xrn/#d|}FzE[\W2#uU ab]eCnZz1 (5l1*])oɎK{+l=B' +wow^}@+#Hxh0C5X[lmH B^is*[ХI}'8ۋB3Z`ЫqIT\b4Jf:y71:Z+m_^E~VPO2k6t l;[-]He8Ѝ&r@tӕD ,dƪUY0-k¯vHjeL}/ :E]S$TrsuVj̅`:l1X3x! L ޏo-aDW槵FwgtJ~WA\ &; .9"`VZl+ <~:ƧU?'1 ޗ"jFY8?vMi]DJq-e5Tj5W 'Yd8Uej:4b)x ]TjWZg[4W 5nD^GԞ`-l֛nPp1„rzfOW1y^$Q=VKI_pySez/ROo~))@H+o' -D=_b bł9`YDa7@pKK ㍌7wH#\H{  `qj|n5%YMKwoF@w|h^5zn kNQ{x&1O[L功